3.82 \(\int \frac {x (d+e x^2)}{(a^2+2 a b x^2+b^2 x^4)^{3/2}} \, dx\)

Optimal. Leaf size=77 \[ -\frac {b d-a e}{4 b^2 \left (a+b x^2\right ) \sqrt {a^2+2 a b x^2+b^2 x^4}}-\frac {e}{2 b^2 \sqrt {a^2+2 a b x^2+b^2 x^4}} \]

[Out]

-1/2*e/b^2/((b*x^2+a)^2)^(1/2)+1/4*(a*e-b*d)/b^2/(b*x^2+a)/((b*x^2+a)^2)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.07, antiderivative size = 77, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 31, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.097, Rules used = {1247, 640, 607} \[ -\frac {b d-a e}{4 b^2 \left (a+b x^2\right ) \sqrt {a^2+2 a b x^2+b^2 x^4}}-\frac {e}{2 b^2 \sqrt {a^2+2 a b x^2+b^2 x^4}} \]

Antiderivative was successfully verified.

[In]

Int[(x*(d + e*x^2))/(a^2 + 2*a*b*x^2 + b^2*x^4)^(3/2),x]

[Out]

-e/(2*b^2*Sqrt[a^2 + 2*a*b*x^2 + b^2*x^4]) - (b*d - a*e)/(4*b^2*(a + b*x^2)*Sqrt[a^2 + 2*a*b*x^2 + b^2*x^4])

Rule 607

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(2*(a + b*x + c*x^2)^(p + 1))/((2*p + 1)*(b + 2
*c*x)), x] /; FreeQ[{a, b, c, p}, x] && EqQ[b^2 - 4*a*c, 0] && LtQ[p, -1]

Rule 640

Int[((d_.) + (e_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(e*(a + b*x + c*x^2)^(p +
 1))/(2*c*(p + 1)), x] + Dist[(2*c*d - b*e)/(2*c), Int[(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, p}
, x] && NeQ[2*c*d - b*e, 0] && NeQ[p, -1]

Rule 1247

Int[(x_)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Dist[1/2, Subst[
Int[(d + e*x)^q*(a + b*x + c*x^2)^p, x], x, x^2], x] /; FreeQ[{a, b, c, d, e, p, q}, x]

Rubi steps

\begin {align*} \int \frac {x \left (d+e x^2\right )}{\left (a^2+2 a b x^2+b^2 x^4\right )^{3/2}} \, dx &=\frac {1}{2} \operatorname {Subst}\left (\int \frac {d+e x}{\left (a^2+2 a b x+b^2 x^2\right )^{3/2}} \, dx,x,x^2\right )\\ &=-\frac {e}{2 b^2 \sqrt {a^2+2 a b x^2+b^2 x^4}}+\frac {(b d-a e) \operatorname {Subst}\left (\int \frac {1}{\left (a^2+2 a b x+b^2 x^2\right )^{3/2}} \, dx,x,x^2\right )}{2 b}\\ &=-\frac {e}{2 b^2 \sqrt {a^2+2 a b x^2+b^2 x^4}}-\frac {b d-a e}{4 b^2 \left (a+b x^2\right ) \sqrt {a^2+2 a b x^2+b^2 x^4}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.02, size = 45, normalized size = 0.58 \[ \frac {-a e-b \left (d+2 e x^2\right )}{4 b^2 \left (a+b x^2\right ) \sqrt {\left (a+b x^2\right )^2}} \]

Antiderivative was successfully verified.

[In]

Integrate[(x*(d + e*x^2))/(a^2 + 2*a*b*x^2 + b^2*x^4)^(3/2),x]

[Out]

(-(a*e) - b*(d + 2*e*x^2))/(4*b^2*(a + b*x^2)*Sqrt[(a + b*x^2)^2])

________________________________________________________________________________________

fricas [A]  time = 0.69, size = 42, normalized size = 0.55 \[ -\frac {2 \, b e x^{2} + b d + a e}{4 \, {\left (b^{4} x^{4} + 2 \, a b^{3} x^{2} + a^{2} b^{2}\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(e*x^2+d)/(b^2*x^4+2*a*b*x^2+a^2)^(3/2),x, algorithm="fricas")

[Out]

-1/4*(2*b*e*x^2 + b*d + a*e)/(b^4*x^4 + 2*a*b^3*x^2 + a^2*b^2)

________________________________________________________________________________________

giac [A]  time = 0.51, size = 40, normalized size = 0.52 \[ -\frac {2 \, b x^{2} e + b d + a e}{4 \, {\left (b x^{2} + a\right )}^{2} b^{2} \mathrm {sgn}\left (b x^{2} + a\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(e*x^2+d)/(b^2*x^4+2*a*b*x^2+a^2)^(3/2),x, algorithm="giac")

[Out]

-1/4*(2*b*x^2*e + b*d + a*e)/((b*x^2 + a)^2*b^2*sgn(b*x^2 + a))

________________________________________________________________________________________

maple [A]  time = 0.01, size = 38, normalized size = 0.49 \[ -\frac {\left (b \,x^{2}+a \right ) \left (2 b e \,x^{2}+a e +b d \right )}{4 \left (\left (b \,x^{2}+a \right )^{2}\right )^{\frac {3}{2}} b^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*(e*x^2+d)/(b^2*x^4+2*a*b*x^2+a^2)^(3/2),x)

[Out]

-1/4*(b*x^2+a)*(2*b*e*x^2+a*e+b*d)/b^2/((b*x^2+a)^2)^(3/2)

________________________________________________________________________________________

maxima [A]  time = 0.64, size = 65, normalized size = 0.84 \[ -\frac {{\left (2 \, b x^{2} + a\right )} e}{4 \, {\left (b^{4} x^{4} + 2 \, a b^{3} x^{2} + a^{2} b^{2}\right )}} - \frac {d}{4 \, {\left (b^{3} x^{4} + 2 \, a b^{2} x^{2} + a^{2} b\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(e*x^2+d)/(b^2*x^4+2*a*b*x^2+a^2)^(3/2),x, algorithm="maxima")

[Out]

-1/4*(2*b*x^2 + a)*e/(b^4*x^4 + 2*a*b^3*x^2 + a^2*b^2) - 1/4*d/(b^3*x^4 + 2*a*b^2*x^2 + a^2*b)

________________________________________________________________________________________

mupad [B]  time = 0.18, size = 48, normalized size = 0.62 \[ -\frac {\sqrt {a^2+2\,a\,b\,x^2+b^2\,x^4}\,\left (2\,b\,e\,x^2+a\,e+b\,d\right )}{4\,b^2\,{\left (b\,x^2+a\right )}^3} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x*(d + e*x^2))/(a^2 + b^2*x^4 + 2*a*b*x^2)^(3/2),x)

[Out]

-((a^2 + b^2*x^4 + 2*a*b*x^2)^(1/2)*(a*e + b*d + 2*b*e*x^2))/(4*b^2*(a + b*x^2)^3)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {x \left (d + e x^{2}\right )}{\left (\left (a + b x^{2}\right )^{2}\right )^{\frac {3}{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(e*x**2+d)/(b**2*x**4+2*a*b*x**2+a**2)**(3/2),x)

[Out]

Integral(x*(d + e*x**2)/((a + b*x**2)**2)**(3/2), x)

________________________________________________________________________________________